A data-dependent weighted LASSO under Poisson noise

نویسندگان

  • Xin Jiang
  • Patricia Reynaud-Bouret
  • Vincent Rivoirard
  • Laure Sansonnet
  • Rebecca Willett
چکیده

Sparse linear inverse problems appear in a variety of settings, but often the noise contaminating observations cannot accurately be described as bounded by or arising from a Gaussian distribution. Poisson observations in particular are a characteristic feature of several real-world applications. Previous work on sparse Poisson inverse problems encountered several limiting technical hurdles. This paper describes a novel alternative analysis approach for sparse Poisson inverse problems that (a) sidesteps the technical challenges present in previous work, (b) admits estimators that can readily be computed using off-the-shelf LASSO algorithms, and (c) hints at a general weighted LASSO framework for broad classes of problems. At the heart of this new approach lies a weighted LASSO estimator for which data-dependent weights are based on Poisson concentration inequalities. Unlike previous analyses of the weighted LASSO, the proposed analysis depends on conditions which can be checked or shown to hold in general settings with high probability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lasso under Poisson-like Heteroscedasticity

The performance of the Lasso is well understood under the assumptions of the standard sparse linear model with homoscedastic noise. However, in several applications, the standard model does not describe the important features of the data. This paper examines how the Lasso performs on a non-standard model that is motivated by medical imaging applications. In these applications, the variance of t...

متن کامل

The Lasso under Heteroscedasticity

Lasso is a popular method for variable selection in regression. Much theoretical understanding has been obtained recently on its model selection or sparsity recovery properties under sparse and homoscedastic linear regression models. Since these standard model assumptions are often not met in practice, it is important to understand how Lasso behaves under nonstandard model assumptions. In this ...

متن کامل

Lazy lasso for local regression

Locally weighted regression is a technique that predicts the response for new data items from their neighbors in the training data set, where closer data items are assigned higher weights in the prediction. However, the original method may suffer from overfitting and fail to select the relevant variables. In this paper we propose combining a regularization approach with locally weighted regress...

متن کامل

Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application

BACKGROUND The study of circulating biomarkers and their association with disease outcomes has become progressively complex due to advances in the measurement of these biomarkers through multiplex technologies. The Least Absolute Shrinkage and Selection Operator (LASSO) is a data analysis method that may be utilized for biomarker selection in these high dimensional data. However, it is unclear ...

متن کامل

Fast global convergence of gradient methods for high-dimensional statistical recovery

Many statistical M -estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient and composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension d to grow with (and possibly exceed) the samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.08892  شماره 

صفحات  -

تاریخ انتشار 2015